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Stationary waves in a laboratory flume 

By P .McIVER 
School of Mathematics, University of Bristol, England 

(Received 24 April 1981 and in revised form 6 October 1981) 

The formation of stationary waves in a laboratory flume is described, and possible 
mechanisms for their production discussed. In  particular, an investigat,ion is made of 
waves on supercritical streams. The mechanism for creating such waves involves 
frictional action through the boundary layers and an approximate equation des- 
cribing this process is presented and shown to give qualitative agreement with 
observation. 

1. Introduction 
The appearance of stationary waves on subcritical streams is a well-known pheno- 

menon and has been a troublesome feature of many laboratory water channels used 
for model testing. A considerable amount of research has been devoted to  finding 
methods to suppress these waves and this can now be done quite effectively. It was 
partly with this in mind that the high-speed circulating water channel in the Depart- 
ment of Mechanical Engineering a t  the University of Liverpool (hereinafter referred to 
as the flume) was fitted with a tilting false floor; by tilting the false floor downwards in 
the direction of flow stationary waves a t  subcritical speeds are suppressed. That 
stationary waves can also appear on a supercritical stream is less well known, as they 
occur only over a narrow range of Froude numbers. It was discovered that the for- 
mation of such waves in the flume could be triggered by tilting the floor slightly 
towards the oncoming supercritical flow, that is in the opposite direction required to 
suppress waves a t  subcritical speeds. I n  particular, it was found that a large single 
elevation of the free surface would often be produced. The research described in this 
paper was begun with two aims. Firstly, to discover why the tilting of the floor 
produces waves; and, secondly, to determine if these waves resembled known 
travelling-wave solutions. 

The changes required to  produce stationary waves on a steady stream were first 
fully described by Benjamin & Lighthill (1964). For any steady two-dimensional flow 
over a horizontal bed the following three quantities are constant a t  any cross-section: 
the volume flux per unit width 

Q = u d y ,  
- h 

the mean energy per unit mass 

1 
R = - 1' (t(u2+ v2) + g(y + h) +"-) dy, r + h  - h  P 
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FIGURE 1. The (T ,  8)-diagram : see text for explanation of the lines A B  etc. 

and the momentum flux per unit width, corrected for pressure forces and divided by 
the density, 

S = (us +;) dy. 

Here y is the vertical coordinate, 7 the height of the free surface above the still- 
water level, and y = - h  is the bed of the stream. The horizontal and vertical 
components of velocity are denoted by u and v, the pressure by p ,  and p and g are 
respectively the density of the fluid and the acceleration due t o  gravity. Benjamin and 
Lighthill suggested that the values of Q, R and S determine a wave train uniquely, and 
proved that this is so for cnoidal waves. If the values of Q, R and S were known for all 
periodic gravity waves i t  would be possible to determine the changes in momentum 
and energy of a stream (the volume flux being constant) necessary to produce a 
particular wave train. With the use of computers it is possible to determine accurately 
the values of Q,  R and S in terms of other wave parameters. The calcu1at;ons for the 
solitary wave were made by Longuet-Higgins & Penton (1974)  and for the remainder 
of gravity waves by Cokelet (1977) .  

To make clear the kind of changes required to  produce a particular wave train 
figure 2 of Benjamin & Lighthill’s paper is reproduced here, in a slightly modified form, 
as figure I .  The dimensionless abscissa and ordinate are given respectively by r = R/R,  
and s = S/S,, where R, and S,  are the values taken by R and S for a critical stream of 
volume flux Q. The outer solid curves represent uniform flows, the subcritical flows 
(F < 1)  lie on the left-hand branch and the supercritical flows ( F  > 1 )  on the right- 
hand. The numbers along the curve indicate the Froude numbers F .  The right-hand 
branch also represents the solitary wave, it being the only wave that ean arise from a 
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uniform stream without the action of friction. All other gravity waves lie within the 
cusped figure. The values of r and s within the horizontally shaded region do not 
correspond to steady flows; if a flow were to attain such values then some adjustment 
would take place until a point within the cusped figure was reached. A third barrier, 
the line within the cusp marked m, is that of those waves, close to the highest, for 
which r and s take their maximum values. (It was shown by Longuet-Higgins (1 975) 
that  the most energetic gravity wave was in fact not quite the highest.) Waves to the 
right of this barrier will break, thus reducing the energy to values in the unshaded 
region to the left of the barrier. 

It is now a simple matter to deduce the kind of changes that can occur in a st9ady 
stream. The extraction of an increasing amount of momentum from a uniform sub- 
critical stream will produce waves of ever greater length until a solitary wave is 
reached. Such a change is represented by the line AB in figure 1.  Possible mechanisms 
for the removal of momentum are the lowering of an obstacle into, or the placing of an 
object on the bed of, the stream. If a small amount of energy is extracted from a 
uniform supercritical stream a wave very close to the solitary wave is produced. The 
line CD in figure 1 represents this process. Viscous forces, mainly due to the action of 
boundary layers, can provide the energy loss required to produce such a near-solitary 
wave. Experimental verification of this was found by Binnie, Davies & Orkney (1955) 
and Binnie & Orkney (1955). They found that a large wave would spontaneously 
appear on a supercritical stream when the Froude number was reduced below about 
1.4. The wave closely resembled a solitary wave and was in fact the leading wave of an 
undular hydraulic jump (a stationary bore), their channel being of insufficient length 
to contain the remainder of the wave train. More recently, Sturtevant (1965) has 
demonstrated that, for bores travelling into still water, boundary-layer action is 
dominant in determining the properties of waves behind the bore front. 

The appropriate periodic waves for shallow water are known as cnoidal waves, of 
which the solitary wave is the limit as the wavelength tends to infinity. Whitham (1974, 
p. 460) gives the background to the equations for these waves and shows how the first- 
order solution is found. Any small change in the energy and momentum flux of a 
uniform supercritical stream that gives a steady state will produce a wave close to the 
solitary wave. A slight tilt of the flume’s false floor causes such a change. Hence a 
theoretical description of these changes is sought, based upon the assumptions of 
shallow-water theory. 

2. Description of apparatus 
The flume is a circulating water channel of approximate capacity 90 000 1, with an 

axial flow impeller driven by a 75 kW motor. The working section has a length of 
3.96 m, a, width of 1.40 m and a maximum depth of 0.84 m. A false floor can be raised 
to reduce the depth to a minimum of 0.15 m; it can also be inclined from the horizontal. 
The flow velocity can be varied continuously in the range 0.03 m s-l to 6-4 m s-l. 

Immediately before the working section, the flow is passed through a honeycomb, 
to reduce unevenness, and then accelerated through a contraction. An appreciable 
wake is cast off from the upper surface of the contraction; to compensate, additional 
water is introduced into the main flow a t  the free surface through a 1 mm wide slot 
running the breadth of the channel a t  the beginning of the working section. The rate of 
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injection can be varied to match the conditions of the main flow. At the downstream 
end of the working section the topmost layer of water is separated from the main flow 
by an adjustable flap. This water is slowed, allowing air bubbles caused by apparatus 
in the working section to escape, and then reintroduced into the main flow a t  a second 
adjustable flap. 

The surface profile was measured by the use of a simple point gauge supported by a 
beam straddling the flume. Velocities were measured using a probe of the three-tube 
type (see Bryer & Pankhurst 1971, p. 60). This consists of a central Pitot tube and two 
chamfered side tubes each connected to a simple water-filled manometer. Such a device 
is particularly simple and easy to construct, consisting of three open-ended tubes 
soldered together with the tube axes in a single plane. The ends of the outer tubes were 
chamfered a t  an angle of 45" for maximum sensitivity to changes in the pressure. The 
probe is aligned with the flow by balancing the pressures in the outer tubes. This is 
known as the 'null-reading ' technique. The total pressure can be measured directly 
from the centre tube. The static pressure, and hence the flow speed, is deduced from 
the difference in pressure between the inner and outer tubes using a previous cali- 
bration. The probe was attached to the end of a supporting stem or blade, streamlined 
so as to reduce the disturbance to the flow. The blade was not clamped rigidly into its 
mounting, but was able to respond to any changes of flow direction in the horizontal 
plane. Minor though these fluctuations are, experience with similar devices has shown 
that a rigidly mounted blade will bend owing to the lift generated once it ceases to be 
correctly aligned with the flow. 

At a typical flow speed of 2 m s-l it was estimated that the angle of flow was measur- 
able to within 0.003 rad (about 0.2') and the flow speed to within 0.02ms-1, an 
error of about 1 %. For further information on the calibration and performance of the 
velocity probe see McIver (1981). 

3. Experimental results 
To gain insight into the physical processes involved, a wide range of floor and speed 

settings were investigated. The results are summarized in figures 2-4. Three non- 
dimensional parameters are used; the wave amplitude a/h,  the ratio of water depth 
to wavelength h/h,  and the Froude number P (measured a t  the channel inlet). 

Figure 2 depicts the variation of amplitude with Froude number for a slope in the 
false floor of 0.002 rad. Results are included for a variety of depths, ranging from 0.4 to 
0.8 m. Mostly the points lie close to a single line; that is the wave amplitude a t  a given 
Froude number varies little with depth. This does not necessarily mean that the same 
wave is obtained (waves referred to as the same occupy the same point in figure 1). 
Lines of constant amplitude arise from the right-hand curve of figure 1, and run in a 
direction roughly parallel to the left-hand curve, which itself corresponds to waves of 
zero amplitude. De (1955) gives a scaled form of Benjamin & Lighthill's diagram 
showing lines of constant amplitude and wavelength. Waves of the same amplitude in 
figure 2 could lie anywhere along such a line in figure 1. 

The ratio of wave height to wavelength is plotted against Froude number in figure 3. 
Draw-down and non-uniformities a t  the channel exit usually meant there was no 
clearly defined downstream trough, making measurements of the wavelength un- 
reliable. Caution should therefore be exercised when drawing conclusions from such 
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FIGURE 2. Variation of wave amplitude a lh  with Froude number P for a bed inclination of 
0.002 rad. Undisturbed water depth h: x ,0*74 m; 0 ,0*67  m; 0 , 0 6 8  m; + ,0.50 m; 0 ,0 .41  m. 
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FIGURE 3. Variation of depth/wavelength ratio h j h  with Froude number F for a bed inclination 
of 0.002rad. Undisturbed water depth h: x ,  0-74m; 0, 0.67 m, a, 0.58m; +, 0 6 0 m ;  0, 
0.41 m. 

a diagram. However, as theory predicts, there is a trend for the longest wavelengths to 
occur a t  Froude numbers close to unity. The changes of wavelength with depth are 
uncertain; a tentative conclusion might be that there is a trend for longer waves to 
occur a t  shallower depth settings. This may be a consequence of the channel being 
effectively longer, allowing a wave to take up a more ‘natural’ configuration regarding 
the position of its nodes. 

Figure 4 is similar to figure 2, but with results from three different inclinations of 
the false floor. The broken line satisfies the equation F = (1 + a/h)h, the first-order 
approximation to the solitary-wave celerity. Daily & Stephen (1952) showed that this 
formula is accurate to withiii about 2.5 yo for travelling solitary waves up to an 
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FIGURE 4. Variat,ion of wave amplitude alh with Froude number P for various bed inclinations : 
x ,0.001 rad; +, 0.002 rad; 0 ,0 .005  rad. The broken line satisfies B2 = 1 +a/h, the first-order 
approximation to the solitary-wave celerity. 

amplitude of about alh = 0.6. If figure 4 is compared with figure 3 of Binnie & Orkney 
(1955) a similar approach to the solitary-wave solution with increasing Froude number 
is found for spontaneous waves in a horizontal channel. Clearly it is close to this line 
that near-solitary waves can be expected to occur. The Froude number a t  the flume 
inlet would then be close to  the non-dimensional wave speed, very little change in 
the original stream having occurred to produce such-a near-solitary wave. 

With the flow speed and the depth held constant, but the inclination of the bed 
increased, an increase in wave amplitude was generally observed. From Benjamin & 
Lighthill’s diagram it seems that there are two feasible mechanisms that could cause 
such changes : 

(i) the extraction of momentum, the flow changes being represented by a line like 
EF in figure 1; 

(ii) the addition of both energy and momentum in such a combination as to produce 
changes similar to those represented by the line GH in figure 1 .  

The first alternative is the more likely, the greater area presented to the stream ex- 
tracting additional momentum. If this is the case then for supercritical flows the waves 
at the low bed inclinations could not be solitary waves as further significant extraction 
of momentum would result in the flow point following a line like I J  in figure 1. The flow 
enters the shaded region, and steady waves can no longer occur. This deduction appears 
to be confirmed by the results of figure 4 for Froude numbers not much greater than 
one. The initial tilting of the bed for these slightly supercritical Froude numbers 
produces a wave considerably different from a solitary wave. However, i t  might have 
been anticipated that a solitary wave would be unobtainable in these circumstances. 
For non-dimensional wave speeds only slightly greater than unity the solitary wave 
has an effective wavelength significantly greater than the length of the flume working 
section. A wave would not be able to appear until changes in momentum and energy 
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FIGURE 5. Horizontal (a )  and vertical ( b )  velocity contours (data set A ) .  
Distances are in m and velocities in m s-l. 

capable of producing a wave of only moderate length had taken place. At shallower 
depths the greater effective length of the working section is offset by the proportionally 
greater effects of the sloping bed and boundary layers acting to give a wave not close to 
a solitary wave. 

The second alternative for the creation of higher waves may also have a place. The 
increased tilt of the bed forces the waves to form closer to the channel inlet, the initial 
flow may be affected by this, the stream emerging under pressure and consequently 
with increased values of R and 8. These increases were confirmed by experimental 
measurements for waves a t  steep bed inclinations. 

I n  all, four sets of measurements were made of the velocity and the static pressure 
over a two-dimensional grid in a plane perpendicular to the bed and parallel to the flow 
direction. The full details of each data set are given in McIver (1981), some information 
from two of them will be presented here. Each set of measurements was made in water 
with an averagt: undisturbed depth of 0.415111. The first set, designated A ,  was made 
with a calibrated velocity setting of 2.425 m s-l (the calibrated speed is that of the 
uniform flow obtained for a given rate of revolution of the flume impeller) and with the 
bed inclined at  04044 rad. The second set, designated B, has a calibrated velocity of 
2.250 m s-1 and a bed slope of 0-0052 rad. The wave corresponding to A lies close to the 
solitary-wave line of figure 4, whereas B does not. 

A representative set of velocity contours is displayed graphically in figure 5 ,  the 
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x (4 
0.00 
0.20 
0.35 
0.50 
0.60 
0.70 
0.80 
0.90 
1.00 
1.10 
1.25 
1.40 
1.55 
1-65 
1.75 
1.85 
1.95 
2.05 
2.20 
2.35 
2.50 

71 (m) 
0.000 
0.006 
0.017 
0.032 
0-045 
0.061 
0.081 
0.102 
0.123 
0.145 
0.175 
0.186 
0.167 
0.143 
0.115 
0.086 
0.057 
0.03 1 
0.005 

- 0.002 
- 0.002 

Q (m2 s-l) 

0.978 
0.976 
0.981 
0.980 
0.981 
0.987 
0.988 
0.994 
0.994 
0.994 
0.994 
0.991 
0.987 
0.973 
0.977 
0.965 
0.945 
0.922 
0.902 
0.916 
0.930 

R (J kg-l) 

6.831 
6.828 
6.827 
6.825 
6.820 
6.820 
6.830 
6.841 
6.847 
6.845 
6.823 
6.833 
6.862 
6.854 
6.854 
6.847 
6.870 
6.816 
6.820 
6.851 
6.803 

S (m3 s - ~ )  
3.142 
3.132 
3.141 
3.130 
3.127 
3.135 
3.137 
3.147 
3.147 
3.139 
3.121 
3.120 
3.127 
3.097 
3.098 
3.070 
3.040 
2.967 
2.924 
2.966 
2.976 

TABLE 1. Data set A :  7, Q,  R, S. Calibrated flume speed = 2.425 m s-l, 
slope of false floor = 0.0044 rad. 

x (m) 
0.00 
0.20 
0.35 
0.50 
0.62 
0.72 
0.82 
0.92 
1.07 
1.22 
1.37 
1.52 
1.62 
1.72 
1.82 
1.97 
2.12 - 
2.32 - 

7 (m) 
0.000 
0.009 
0.022 
0.039 
0.060 
0.078 
0.097 
0.116 
0.137 
0.141 
0.124 
0.095 
0.072 
0.049 
0,028 
0.004 

-0.012 
-0.017 

Q (m2 s-l) 

0.899 
0.902 
0.901 
0.907 
0.903 
0.900 
0.898 
0.895 
0.900 
0.896 
0.894 
0.889 
0.894 
0.883 
0.870 
0.861 
0.853 
0.864 

R (J kg-l) 

6.449 
6.466 
6.469 
6.475 
6.462 
6.464 
6.433 
6.439 
6.444 
6.448 
6.443 
6.447 
6.443 
6.447 
6.442 
6.442 
6.438 
6.484 

S (m3 s-~) 

2.806 
2.815 
2.810 
2.818 
2.798 
2.790 
2.766 
2.759 
2.765 
2.757 
2.748 
2.738 
2.743 
2.724 
2.696 
2.675 
2.655 
2.695 

TABLE 2. Data set B: v ,  Q ,  R, S. Calibrated flume speed = 2.250 m a-l, 
slope of false floor = 0.0052 rad. 

flow direction is from left to right, with the origin of x corresponding to the beginning 
of the flume working section. Chebyshev polynomials were fitted to the measured 
surface profile using a least-squares method and the resulting smoothed profile is used 
in this figure and also for the subsequent calculations. A lack of symmetry in the 
profile is apparent; the water level a t  the downstream trough is lower than that a t  the 
channel inlet while the maximum slope of the downstream face is noticeably greater 
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FIGURE 6. The boundary-layer thickness 8 compared with the experimentally 
measured profile for data set A (distances in m). 

than that of the upstream face. A corresponding asymmetry can be seen in the 
horizontal- and vertical-velocity contours; the whole wave appears to be tilted down- 
wards in the direction of flow. A supercritical flow encountering a rise in the bed would 
experience a rise in the mean level. However, the Froude number of the flow over most 
of the length of the wave is less than unity, which perhaps explains this tilting of the 
wave. 

The values of Q ,  R and 8, as defined by (l.l)-( 1.3) were calculated a t  a number of 
stations along the centre line of the flume, and are presented, along with the free surface 
height 7, in tables 1 and 2. The integrations were carried out using Simpson’s rule, and 
an approximation to the experimental error in Q, R and S was made by assuming that 
the error distribution within the summation can be approximated by a normal 
distribution. At the wave crest for data set A ,  for example, the errors are 

- ‘ v - -  - 0.002, SQ 0.002 
Q - 0.99 

= 0.001, 
dR 0.009 
R - 6.83 
- N -  

= 0.003. 
88 0-008 
S - 3.13 
_- -  

It is to be expected that the largest errors will occur a t  the wave crest, as it is here that 
the flow varies most rapidly with depth. 

In calculating Q, R and S no account was taken of the bottom boundary layer, The 
extent of the boundary layer was determined by measuring the total head close to the 
bed and estimating where i t  attains its free-stream value. Figure 6 shows the experi- 
mentally measured boundary layer (for data set A )  in relation to the free surface. 
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A crude estimate for the boundary-layer error can be made. Consider the energy per 
unit mass R, a t  any cross-section with a local depth h (assumed to be large compared 
with the thickness of the bottom boundary layer) and with hydrostatic pressure 
assumed, 

u2 dy + gh. 

If the flow outside the boundary layer differs little from a uniform stream of velocity U 
then, to a first approximation, 

where 8, and S2 are respectively the displacement and momentum thickness. Hence 
the error in R due to the boundary layer is given approximately by 

SR = $U2F, 

where 8 = (8, + S,)/h. Similarly, the errors in Q and S can be estimated respectively as 

SQ = US,, SS = U2h8. 

For a turbulent boundary layer on a flat plate, Schlichting (1960, p. 536) gives 

S, N 48, S, N @, 

where S is the boundary-layer thickness (the distance from the wall where the velocity 
reaches 99 yo of its free-stream value). Beneath the wave crest for data set A the mean 
velocity is 1.65 m s-l, and hand 6 are respectively 0.6 m and 0.04 m. Hence the excesses 
in Q, R and S due to neglect of the boundary are given by 

= 0.008. 
SS 0.026 
S - 3.13 
-N- 

This indicates that these errors are more significant than those due to inaccuracies in 
measurement; even so, they are small (less than 1%) and less than the spread of 
values along the wave. 

The results show a general trend for Q and S to decrease along the wave, though the 
behaviour of R is less clear. A decrease in R and S is to be expected because of the 
extraction of energy and momentum from the flow by the tilted floor and by viscous 
action. The decrease in Q ,  principally in the downstream third of the wave, indicates 
that fluid is being transported away from the centre of the channel by secondary flows. 
There are two possible types of secondary flow, the cross-flume motion caused by the 
differing shear stresses around the channel perimeter and also those generated by 
turbulence. 

The flow a t  the downstream end of the channel is noticeably non-uniform across 
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FIGURE 7 .  Free-surface height 7 :  comparison of experiment with solitary wave for data set A 
(distances in m). Tilt = 0.07 rad (4O), a = 0.209 m, h = 0.396 m, c = 2.420 m s-l. 
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FIGURE 8. Free-surfacc height 7 : comparison of experiment with solitary wave for data set B 
(distances in m). Tilt = 0.05 rad (3"), a = 0.184 m, h = 0.378 m, c = 2.335 m s-l. 

the width, even away from the walls. With the highest waves there are deviations from 
the mean surface level, measured across the flume, of up to 1 cm. There are maxima 
in the height of the free surface a t  the walls and near the centre line, a further indication 
of the existence of secondary currents. I n  addition, in this part of the flume the free- 
surface height is slightly asymmetric about the centre line. 

It is known that Q,  R and S determine a wave train uniquely, so it should be possible 
to deduce the nature of a wave from their values. The spread in vaIues along the wave 
necessitates some form of averaging. The cross-sections chosen for the measurements 
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have a greater density near the wave crest, so a simple average gives a weighting biased 
towards this region. The first thought is to compare the resulting values with those 
taken by solitary waves. 

The distortion of the flow along the channel means that the wave height a and water 
depth h cannot be regarded as known, though their sum (the total depth below the 
crest) can. Using the third-order theory given by Fenton (1972), Q, R and S were 
calculated for solitary waves over a range of values of a and h such that a + h retained 
its measured value. By comparing these calculations with the measured values an 
estimate was made for the true depth and wave height. The resulting solitary wave 
profiles and the measured profiles are compared in figures 7 and 8, the corresponding 
values of a, h and the wave speed c are given in the figure captions. As noted previously, 
the observed waves appear to be tilted slightly from the horizontal and the theoretical 
waves have been similarly inclined, in all cases by less than 0.07 rad (4'). When incor- 
porated into the values of Q ,  R and S and a + h the tilt affects only the third significant 
figure, which is within the limits required to determine a and h to within 0-005m. 
Good agreement between theory and experiment is obtained, particularly in the first 
two-thirds of the wave. In  the downstream third, secondary flows, and other effects of 
the finite-width channel distort the wave appreciably, Set A is closest to the solitary- 
wave line of figure 4, and gives the best agreement; note that the calculated wave speed 
is close to the calibrated flow speed. Set B is probably further into the cnoidal wave 
region, and will also be more distorted owing to the greater tilt of the false floor. 
Wiegel (1  960) has given a detailed presentation of cnoidal wave theory; however, 
attempts to match with this proved unsuccessful, most likely because of the difficulty 
in obtaining a reliable wavelength. 

4. Theory 
Consider the steady flow ofa uniform stream of speed U and depth h that encounters 

irregularities in the bed described by y = b(x) (the origin of y is taken at the upstream 
level of the bed). If the changes in the bed level are small the velocity field may be 
considered as a uniform horizontal flow plus a small perturbation, described by the 
velocity potential #(x, y). The solution of the problem for q5 and ~ ( x )  (the height of the 
free surface ahove y = h)  may be carried out using a perturbation expansion of # about 
its value on y = 0, similar to that used in solitary- and cnoidal-wave theory (see e.g. 
Whitham 1974, p. 464). To first order in the wave amplitude the equation for the free- 
surface height is 

3 
(4.1) lh2 6 r,,,+hrT"-(F-l)r,+:b,= O ,  

where F is the Froude number of the upstream flow. Only second-order variations 
(relative to the wave amplitude) of the bed have been considered; with b = 0 (4.1) is 
the Korteweg-de Vries equation for stationary waves. 

A simple solution of (4.1) with non-zero b is found if 

b = blasech2ax, a2 = 3a/4h3, (4.2) 

for some b,, thus mimicking the solitary-wave profile. The solution is 

7 = asech2ax, a/h = 2 ( F -  l)-b,; 
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FIGURE 9. The solution of (4.1) with the measured boundary layer for wave A (-) compared 
with the first-order solitary wave (. . .). Distances are in in. 

a solitary wave sitting over a slight hump on the bed will have an amplitude slightly 
less than that of a wave on a similar stream with a flat bed. A quantitative comparison 
of solutions of (4.1) with the experimentally measured profiles cannot be expected to be 
successful. The theory is applicable to flows with a Froude number little greater than 
unity, but shallow-water waves were only produced experimentally for these Froude 
numbers by tilting the false floor significantly, and hence violating the assumptions 
behind the theory. However, a qualitative test of the equation can still be made. The 
bed function b(x )  was chosen to represent the effects of the tilted bed and the bottom 
boundary layer together. The latter was achieved by estimating the displacement 
thickness from the boundary-layer thickness. Equation (4.1) was solved by a Runge- 
Kutta method using; r( - 00) = 0 as an initial condition. In  figure 9 a comparison is 
made of the solution with the first-order solitary wave corresponding to the upstream 
conditions, the difference is negligible over the front face, but there is a slight increase 
in the slope of the rear face; this is in agreement with observation. The flow is from 
left t o  right. 

5. Conclusion 
The appearance of stationary waves in a laboratory flume, caused by the tilting of 

a false floor, has been explained in terms of changes in the energy R and the momentum 
flux S of the stream. The boundary layers appear to be of primary importance in 
bringing about the changes. It has been found that R and S can be measured with 
sufficient accuracy for them to be used as an aid in determining the nature of the waves. 
The profile of the irrotational solitary wave has been shown to give a good description 
of the free surface, even for stationary waves in a channel where viscous effects are 
important. 

An existing theory for progressive waves has been adapted to describe the dissipation 
of energy by boundary layers in a steady flow. Qualitative agreement between theory 
and experiment has been found. 
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